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Abstract: This research studied the relationship among important factors of cement production – namely, raw materials, fuels, and 
manufacturing processes – and gaseous and particulate emissions. Two types of statistical prediction models, multiple regression 
(MR) and artificial neural network (ANN), were developed and compared. The recorded daily average data of raw materials, coal 
fuels, alternative (hazardous waste) fuels, production processes, and gaseous and particulate emissions in 2007 were used in the 
analysis. Results show that the MR and ANN models for predicting NO2, SO2, CO2, HCl and TSP, have the Adjusted R2 values in the 
range of 0.25-0.57 and 0.44-0.66, respectively. It is also found that the independent variables that have significant effect on the of 
models are quantity of clay, quantity of limestone, raw mill running time, alternative fuels used, kiln running time, and quantity of 
clinker. Overall, the ANN models perform slightly better than the MR models. 
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1. Introduction 
 

The cement industry is a major source of air pollutants 
such as dust and gases that affect people’s health and quality of 
life. Air pollutant emissions from the cement factories normally 
vary due to various factors. The variation in raw materials used 
and manufacturing processes can affect air pollutant emissions. 
In addition to conventional raw materials, some cement factories 
use hazardous wastes, such as used tires, lubricating oils, or 
solvents, as alternative fuels. Good management of such alternative 
fuels utilized can substantially reduce the emissions [1]. There 
are various types of pollutant emitted, but common control devices 
such as electrostatic precipitators (ESPs), when used alone in cement 
plants only control particulate matters, not gaseous pollutants.  

The Siam City Cement in Saraburi Province, Thailand, 
was here chosen to study for the relationship among important 
factors of cement production and gaseous and particulate 
emissions. Saraburi Province is known as the center of cement 
production in Thailand, and Siam City Cement is a leading 
cement factory in the nation. The factory is among only a few 
cement factories that utilize hazardous wastes as alternative 
fuels in their production processes. The five gases and particulate 
matters studied are: nitrogen dioxide (NO2), sulfur dioxide 
(SO2), carbon dioxide (CO2), hydrogen chloride (HCl), and total 
suspended particles (TSP). The concentration data of these 
gases and particulate matters were obtained from the factory’s 
continuous emission monitoring system (CEMs). It is worth to 
mention that carbon monoxide (CO) was not monitored by the 
CEMs, and thus it was not included in the analysis of this study. 
Consequently, statistical models were developed for predicting 
the gaseous and particulate emissions, using raw material 
components and manufacturing processes data treated or 
assignedas predictors. Two statistical modeling techniques were 
employed in this study to formulate two types of models: the 
multiple regression (MR) modelsand the artificial neural 
network (ANN) models. The two techniques are commonly and 
widely used for developing air pollution prediction models [2-
3]. The Siam City Cement consists of 3 main facilities: Facroty 
#1, #2, and #3. Each factory has 2 kilns in operation. This paper 
presents the results of Kiln #5, one of the two kilns in operation 
in Factory #3, due to its more complete process information. 
Each kiln has the capacity of about 10,000 ton clinkers/day. 

 
2. Experimental 

 
2.1 Process Study and Data Collection 

The research started from studying the manufacturing 

processes, collecting the data, and building the database of the 
variables. After the processes and emission routes were investigated, 
important factors to be included in the models were identified. 
There were a total of 73 independent variables which can be 
divided into 3 groups: raw materials, fuels, and production 
processes. The dependent variables are the gas and particulate 
concentrations: NO2, SO2, CO2, HCl, and TSP. Subsequently, the 
database of these variables were developed from their daily 
recorded average data in 2007. Descriptive analysis and outlier 
detection were performed on the collected variable data. 
Significant correlations among variables were identified. Variable 
transformation with natural logarithm was used in this study to 
investigate the best correlation among variables. As a result, 
there were 4 paths of model development: (1) independent 
variables vs. dependent variables, (2) logarithm of independent 
variables vs. dependent variables, (3) independentvariables vs. 
logarithm of dependent variables, and (4) logarithm of independent 
variables vs. logarithm of dependent variables.  
 
2.2 Model Development 

For the MR model development, the stepwise selection 
techniques were employed for selecting appropriate variables 
into the models. If Xi is the value of the input variable i and Y is 
the actual gas or particulate concentration, then the constant b0 
and the regression coefficients bi are computed by the ordinary 
least-squares equation: 

n
0 i i i

i 1
Y b b X

=
= + + ε∑    (1) 

The available data for MR procedure was randomly 
separated into 2 sets: regression analysis data set (90%) and 
validation data set (10%). Residual analysis was performed on 
the possible models obtained from the regression analysis. Model 
validation wascarried out using the validation data set which was 
separated from the data used in the model development.  

For the ANN model development, the multi-layer feed 
forward approach (MLFF) and the error-back propagation 
algorithm (BP) with sigmoid function were used with the selected 
predictor variables. The sigmoid function according to the 
equation: 

    (2) 

The model development algorithm is shown in Fig. 1 [4]. 
The available data for ANN procedure was randomly separated 
into 3 sets: training data (60%), test data (20%) and validation 
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data (20%). The model structure used was 1 hidden layer with 
the number of hidden nodes calculated from the following 
equation: 
 

Number of Hidden Nodes = 0.5(I + O) + (P)0.5 (3) 
 

where I, O, and P are the number of input variables, output 
variables, and training patterns, respectively. Values of the 3 
parameters used were varied in order to obtain the combinations 
which yield better model performance: learning rate (0.05, 0.1, 
0.2), weight (0.3, 0.5, 0.7), and momentum (0.1, 0.5, 0.9). In 
each training cycle, the training data is used to train the model 
to predict the outputs. The prediction error is then calculated 
and used to modify the weighting coefficients in the model. 
Consequently, the prediction is compared to the test data and 
the corresponding error is calculated. If the error is more than 
0.005, the training cycle is repeated. If the error is less than 
0.005, or the number of training cycles reaches 20,000 cycles, 
the training is considered to be completed. 

The final model structure is validated with the 
validation data set. The best models are those with minimum 
value of statistical measurement of mean absolute percentage 
error (MAPE), according to the equation: 

   (4) 

where Actual and Predict represents actual measurement data 
and predicted data obtained from the model, respectively. The 
N is the number of data used in the calculation. 
 

 
Figure 1.The ANN model development algorithm. 

 
2.3 Model Performance Comparison 

Once the best models from the 2 approaches were 
obtained, the validation data set from the MR procedure was 
employed again to compare their predicting ability. The model 
performance was evaluated using three criteria: correlation 

coefficient (R), index of agreement (I.A.), and root mean square 
error (RMSE). The I.A. and the RMSE are calculated using the 
following equations: 

 (5) 

 

 

 (6) 

 
A value of I.A. close to unity indicates agreement of the 

model prediction values and the actual values. In contrast, the 
more RMSE value, the more error would be obtained from the 
prediction of the model. The RMSE represents the model error 
in the unit of the dependent variable. 

 
3. Results and Discussion 

 
3.1 Process, Emission Routes, and Predictor Variables 

Raw materials are conveyed from silos to raw material 
mills, preheated in cyclone preheaters, and then mixed with 
additional materials such as alternative fuel and coal in the 
calciners. Subsequently, the kiln transforms the mixed materials 
in to cement pellets or “clinkers”, which are cooled down rapidly 
in the clinker cooling unit and transported to silos as finished 
products. Three types of coal: bituminous, lignite, and anthracite 
are processed in coal mills and preheated before feeding to the 
kiln as main heating fuels. Industrial wastes are occasionally 
added to the calciners as alternative fuels and for the purpose of 
waste treatment. There are as much as 46 types of waste listed 
and used, including solvents, used oil, sludge, agricultural waste, 
spent resin, rubber, and plastic. 

Fig. 2 shows the process emission routes. Hot gas from 
the clinker cooling unit goes through successive heat recovery 
steps starting from the calciners, then the cyclone preheaters, and 
finally the raw mills. The cyclone and the main electrostatic 
precipitator (EP) then clean the gas before releasing it to the 
atmosphere. Other two routes are the gas from the kiln, which is 
released through EP #3 and EP#4 in a similar fashion. Lastly, a 
fraction of the clinker cooling unit gas is released directly 
through EP #1. The main EP emission route is selected for the 
model development in this study, due to available gas and 
particulate concentration data from the continuous emission 
monitoring system (CEMs). The CEMs was operating normally 
throughout the period of the data collection. Other routes, on the 
other hand, have only routine stack sampling results.  

Once the process and its emission routes were 
thoroughly understood, pertinent factors of the emissions were 
determined as predictor variables and their data were collected. 
The raw material variables are: limestone (Lime), shale with 
silica (ShaleS), shale with alumina (ShaleA), laterite typ B (LB), 
clay (Clay), Klangdong soil (KD), alternative raw materials 
(AR), and other materials (Others). The fuel variables are: high 
quality bituminous (Coal_B), low quality bituminous (Coal_C), 
lignite (Lig), antracite (Ant), and 46 types of alternative fuel 
(W_01 to W_46). These two groups of variables represent the 
amount of materials used in the process per day. The process 
variables are: percent raw material residual that passed 90 
micron screen (R_90), percent raw material that passed 200 
micron screen (R_200), heating value of fuels in kiln (HVA), 
heating value of fuels in calciner B (HVB), heating value of 
fuels in calciner C (HVC), kiln temperature (T), kiln torque (KT), 
kiln excess oxygen (O2), raw material moisture (Moist_RM), 
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fuel moisture (Moist_F), non-reacted calcium oxide in kiln 
(CaO), kiln operating time (KR), raw mill operating time (RM), 
coal mill operating time (CM), and clinker produced (CK). The 
percent raw material residual that passed 90 and 200 micron screen 
represent coarse and fine characteristic of the raw materials. 

 
3.2 Prediction Models 

Results show that the MR models for predicting NO2, 
SO2, CO2, HCl and TSP, have the Adjusted R2 values in the 
range of 0.25-0.57 (Table 1).The NO2 model has the highest 
R2,it can explain 57% of the variation in the emission. The TSP 
model has the lowest R2 and can explain only 25% of the 
emission variation. The reason could be that the TSP 

concentrations were controlled by the EP and thus were not 
varied significantly with other variables. The independent 
variables frequently appear as predictors in the MR models are 
clay, limestone, raw mill operating time, alternative fuels, kiln 
operating time, and clinker produced. More discussion on the 
MR models can be found in the related paper published earlier 
[5]. Note, however, that some results in the current paper are 
different from the referred one due to improved analysis. The 
ANN modelshave the R2 values inthe range of 0.44-0.66 (Table 
2).Their MAPE are in the range of 15.20-71.30. The CO2 model 
has the highest R2 values and low MAPE, with 27 independent 
variables in use. The SO2 model does not perform well relative 
to the rest of the models.  

 
 

 
Figure 2.Emissions from Cement Kiln Operation. 
 
Table 1. Optimum MR models for prediction of gas and particulate concentrations. 

Gas/Particulate MR Model Regression Validation 
Adj. R2 RMSE R 

NO2 NO2 = - 51.686 + 0.020Clay + 1.445W_46 + 0.062T 
+ 1.093W_23 + 20.584Moist_RM + 41.917R_200 
- 0.007ShaleA - 2.907R_90 - 2.101O2 - 0.111KT 

0.57 7.05 0.63 

SO2 Log_ SO2 = - 9.160 + 0.445Log_Lig - 0.316Log_Ant 
- 0.060Log_Coal_C + 8.546Log_R_200 
+ 0.067Log_W_42 + 0.406Log_Clay - 0.115Log_LB 

0.39 29.99 
 

0.74 

CO2 CO2 = 19.308 + 1.172Log_W_38 
- 1.141Log_RM + 1.277Log_W_23 
- 0.618Log_KD + 0.113Log_W_03 - 0.082Log_Coal_C 

0.52 1.27 
 

0.44 

HCl HCl  = 55.418 - 1.966Log_RM + 0.687Log_W_38 
- 5.281Log_HVA - 0.168Log_Coal_C 
+ 0.118Log_W_03 + 0.189Log_W_42 
+ 0.471Log_W_34 - 0.290Log_Ant + 0.953Log_W_36 

0.40 1.63 
 

0.60 

TSP Log_TSP = 3.253 + 7.12E-5 ShaleS + 0.006AR 
+ 1.53E-4 Clay - 0.002RM - 0.007KD 

0.25 8.41 
 

0.34 
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Table 2. Optimum ANN models for prediction of gas and particulate emission. 
Gas/ 

Particulate 
Variable Transformation Architecture1 Parameter2 Statistics 

Independent Dependent η w α R2 MAPE 
NO2 - - 27-29-1 0.2 0.5 0.9 0.44 21.23 
SO2 - Natural Logarithm 18-24-1 0.1 0.7 0.1 0.37 71.30 
CO2 - - 13-22-1 0.2 0.5 0.5 0.66 15.34 
HCl - Natural Logarithm 19-25-1 0.05 0.3 0.9 0.65 25.27 
TSP - Natural Logarithm 7-19-1 0.2 0.3 0.9 0.61 15.20 

1Input–Hidden layer–Output;2η: learning rate, w: initial weight,α: momentum 
 

 
(a) 

 
(b) 

Figure 3. Influence of predictor variables to gaseous and particulate emission: (a) MR models and (b) ANN models. 
 

In each MR model, the influence of predictor variables 
to the dependent variable can be evaluated using standardized 
regression coefficients, or beta. The more beta value, the more 
influence of that predictor to the gas or particulate concentration 
emitted. Based on the beta value of the independent variables, 
the most influential predictor of NO2, SO2, CO2, HCl and TSP 
are clay, clay, alternative fuel – other waste, raw mill operating 
time, and alternative raw material, respectively. Fig. 3(a) shows 
the influence of 4 groups of predictors – raw material, fuel, 
alternative fuel, and process – on the concentrations of gas and 
particulate matter in the emission. The raw material group is 
clearly the main influence of TSP concentration, while the 
alternative fuel group highly influences CO2 and HCl 
concentration values. SO2 is influenced almost equally by the 
fuel and raw material groups. Concentration of NO2, on the 
other hand, is influenced most by the process group. 

In the similar analysis, the influence of predictor 
variables to the dependent variable in each ANN model was 
evaluated using their contribution factors – values given to each 
independent variable after the model development is completed. 
The influence of the 4 groups of predictors is shown in Fig. 3(b). 
The results are comparable to those of the MR models, only the 
influence is less pronounced. It is worth mentioned that, while 
the MR approach eliminates less significant variables from the 
final model, the ANN approach contains all independent 

variables assigned to the model. Therefore, the influence of the 
predictors in the ANN model spreads out more. 

 
3.3 Model Performance Comparison 

The results of the final model validation process are 
presented in Fig. 4, which shows the scatter plots of predicted 
values (X-Axis) versus actual values (Y-Axis). The R values 
range from 0.34-0.74 and 0.52-0.78 for the best MR and ANN 
models, respectively. The prediction values from ANN models 
correlate with actual data better in all 5 cases. The SO2 model 
has the highest R value in both types of model, due partly to the 
wider range of values. Despite the fact that the TSP 
concentrations were controlled by the EP, as mentioned earlier, 
the ANN model still managed to achieve moderate prediction 
ability – R value equals 0.59. 

Conclusion could be drawn in the same direction when 
considering the I.A. and RMSE results (Fig. 5). The I.A. values 
of both types of model are rather close together, ranging from 
0.64-0.94 and 0.63-0.81 for the MR and ANN models, 
respectively. The RMSE values range from 1.7-11.2 and 1.6-
22.7, respectively. With the exception of SO2 models, both types 
of statistic suggested that the ANN models perform marginally 
better than the MR models. This conclusion is common with 
relevant study [6-7]. 
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Figure 4.Scatter plots of predicted values versus actual values. 
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(a) 

 

 
(b) 

 
Figure 5. Model validation statistics: (a) I.A. and (b) RMSE. 
 

4. Conclusions 
 

The pertinent factors of cement production which affect 
the gas and particulate concentrations in the emission were 
investigated in this study. The statistical models obtained could 
predict NO2, SO2, CO2, HCl and TSP with the R2 values in the 
range of 0.25-0.66. Influential predictors in the models were 
identified. The outcomes of this study are beneficial tools for 
managing the plant emission, such as selecting production 
condition or raw material ratio to reduce pollution emission, or 
predicting future emission in different scenarios. 
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